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SUMMARY

It is well known that the resolution of Maxwell equations may provide large dense matrices, being thus
a computer intensive problem. Even small problems require a huge amount of memory to manipulate
matrices during the O(N 3) involved operations.
The fast multipole method enables to compress and approximate matrices. Coupled with an iterative

resolution of the linear system the complexity reduces to O(N iterN logN ) operations.
In order to use multiprocessors machine and to reduce computation times, we propose here a parallel

implementation of the fast multiple method. This article relates our �rst results, as well as the di�culties
encountered. Copyright ? 2003 John Wiley & Sons, Ltd.
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1. INTRODUCTION

There have been many approaches for the numerical study of Maxwell equations.
Finite Elements [1] or Finite Di�erences [2] discretize domains between the scattering

object and box including the object. They allow multiple frequencies computation with only
one simulation and works also with inhomogeneous materials. However, the accuracy may
decrease in non-convex domain where the equations have to be integrated for a very long
time.
Integral methods [9] compute the electric and magnetic �elds on the surface of the object

which allows to deduce the value of the entire �elds outside the object. They lead to better
accuracies than the previous methods, because in�nite radiation conditions are well satis�ed
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and because the frequency domain is used. Moreover, error estimates for Maxwell equa-
tions are known for the Raviart–Thomas elements [4] and there opens a way for adaptive
solvers.
Solving integral formulations of Maxwell equations may provide large dense matrices. These

matrices construction and direct solvers require a lot of memory, and O(N 3) operations, which
are already very expensive even for small problems: 6GB for a small 20 000 unknowns
problem! Iterative solutions of the linear systems avoid the storage of the matrices but would
be too computer intensive.
An acceleration procedure by Rokhlin [5–7], the fast multipole method, is based on an

hierarchical decomposition of the interactions between particles on a surface, using integral
equations. The fast multipole method is a way for compressing and approximating the matrix
and for reducing the complexity with an iterative method to an order of O(N iterN logN )
by a hierarchical decomposition of the interactions between particles. For large problems,
this method requires still long computation times and we need a parallel implementation for
solving them. Furthermore, clusters of computers become cheap and useful, but an adaptation
of the algorithms is needed.
In this paper, �rst, we will see the mathematical and algorithmic background of the fast

multipole method, based on a well-known integral formulation [8].
Then, we will choose some paradigms for our implementation, and explain the problems

and how to solve them.
Last, we will provide some �rst results, a code validation and a performance overview.

2. THE FAST MULTIPOLE METHOD

2.1. Integral formulation

Let us consider the Maxwell’s equation in the frequency domain for an electromagnetic
monochromatic wave of frequency !:

rot E − –!�0H =0 in �e

rotH + –!�0E=0 in �e

E ∧ n|� = − Einc ∧ n on �

lim
|r|→+∞

|r| |√�0E −√
�0H ∧ r|=0

where

• E and H are the electric and magnetic vector �elds;
• �e is the complement of an open set of boundary � assumed perfectly conductive;
• �0 and �0 are the dielectric parameters of the medium assumed constant;
• n is the normal to the surface �;
• – is the �rst square root of −1 in C.

By a theorem of representation [9], we can �nd the solution to these equations by solving
the electric �eld integral equation or the magnetic �eld integral equation
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EFIE: ∀y∈�,

(n∧Einc)(y) = –!�0
(∫

�
G(x − y)j(x) ds(x)

)
∧ n(y)

+
–
!�0

(∫
�
(∇yG(x − y) div� j(x)) ds(x)

)
∧ n(y)

which can be rewritten as, ∀t⊥ n(y),

−Einc(y) t= –!�0
∫
�
t G(x − y)j(x) ds(x) + –

!�0

∫
�
t∇xG(x − y)div� j(x) ds(x)

MFIE: ∀y∈�,

(n∧H inc)(y)=
j(y)
2
+ n(y)∧

∫
�
∇xG(x − y)∧ j(x) ds(x)

where

• j is the electric current (the magnetic �eld m is zero on a perfectly conductive surface)
• G is the Green kernel de�ned by

G(r)=
e–�|r|

4�|r| with �=!
√
�0�0 (1)

2.2. Discretization

The integral equations are written in weak form, and discretized by the Raviart–Thomas
elements.
Let Ji be the Rao–Wilson–Glisson [10] basis functions de�ned for each edge i at the

intersection of two triangles T+ and T− by

Ji(x)=




1
2|T+| (x − S+) if x∈T+
1

2|T−| (x − S−) if x∈T−

where,

• S+ and S− are the vertices opposite to the edge, in T+ and T−;
• |T | is the area of a triangle T .
Then the resolution of the EFIE with a Galerkin method based on {Ji} leads to solve Ma= b

with

Mi; j =
∫
�×�

G(x − y)(Ji(x) Jj(y)− 1
�2
div� Ji(x) div� Jj(y)) d�(x) d�(y)

bi =
–
!�0

∫
�
Ji(x)Einct (x) d�(x)

Copyright ? 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2003; 43:839–864



842 P. HAV�E

Remark 1
M is a symmetric matrix.

The MFIE leads to solve the following linear system, with a Galerkin method:

1
2

∫
�
Ji(x) Jj(x) d�(x) +

∫
�
Ji(x) n(x) d�(x)∧

∫
�
∇xG(x − y)∧ Jj(y) d�(y)

=
∫
�
Ji(x) (n(x)∧H inc) d�(x):

However, to achieve a better convergence, we use the combined �eld integral equation
(CFIE), which is a linear combination of EFIE and MFIE de�ned by

CFIE= �EFIE + (1− �) –
�
MFIE

There exists also more general formulations with a linear combination of EFIEt , EFIEn,
MFIEt , MFIEnterms‡ [11; 12] for a better performance on several criteria like accuracy, res-
onance and conditioning number.
These matrices are complex dense matrices and the resolution of the system can be done

using an iterative method (e.g. GMRES, QMR, etc.). The main part of the computation is
matrix–vector products.

2.3. The FMM algorithm

The FMM is based on the formula

e–�|P+M |

|P +M | = –� lim
l→+∞

∫
S2
e–�〈s;M〉Tl;P(s) ds for P;M vectors of R3 (2)

where Tl;P is the transfer function de�ned for any point s∈ S2, the unit sphere, by

TL;P(s)=
L∑
m=0

(2m+ 1)–m

4�
h(1)m (�|P|)Pm(cos(s; P)) (3)

with L a truncation parameter, the spherical Hankel function h(1)m , Pm Legendre polynomials,
and 〈·; ·〉 the usual scalar product.
Remark 2
Approximations (2) and (3) may increase the computational error, by the fact that:

lim
l→+∞

Tl;P(s)= +∞

‡Respectively, formulations of Einc t, n∧Einc, H inc t and n∧H inc.
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We can discretize (2) with a sample of directions sp of S2 and associated quadrature
weights !p

e–�|P+M |

|P +M | ∼ –�
∑
p
!ke–�〈sp;M〉Tl;P(sp)

Let us consider two well separated spheres S1 and S2 (of respective centres C1, C2 and
radius R1, R2). For any points x1 inside S1 and x2 inside S2.

R1

R2

C1

C1

C2

C2

Let us de�ne

r0 =C2 − C1; r= x1 − C1 − C2 − x2
By writing x1 − x2 = r0 + r, we obtain

e–�|x1−x2|

|x1 − x2| ∼ –�
∑
p
!pe–�〈sp; x1−C1〉Tl; r0 (sp)e

−–�〈sp; x2−C2〉 (4)

2.4. One-level algorithm

Let N be the number of edges on the surface of the perfectly conductive object. The mid-
edges are the quadrature points. These points are divided into

√
N clusters of

√
N points.

Each cluster Pr is bounded by a sphere Sr of centre Cr and radius Rr = maxxi∈Pr |xi − Cr|.
We de�ne the well separated clusters by the negation of

Pr close to Ps ⇔ |Cr − Cs|6�(Rr + Rs)

with �¿1 series converge, and �¿
√
5
2 provide a simple control of error (Section 2.6).

Remark 3
Other weaker proximity criteria may be used for a better approximation with larger close-
neighbourhood and a larger close-interactions matrix.

We can rewrite the matrix M as the sum of far interactions and close interactions matrices

M far
ij =Mij if xi and xj are not close (i:e: far); else 0

M close
ij =Mij if xi and xj are close else 0

The FMM method is an e�cient way to compress the M far matrix with formula (4). To
make the product u=Mv, we compute u= ufar + uclose with uclose =M closev and ufar =M farv;

Copyright ? 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2003; 43:839–864
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Cluster Pr

clusters close to Pr

Boundary Γ of the object 
non-empty clusters far from Pr

Figure 1. Transfers for one-level FMM.

M close is computed exactly. The FMM compression of M far is a way to compute its product
faster but with an approximation and without storing all its coe�cients.
We can decompose the computation of ufar =M farv into 3 steps:

• Computations of radiation functions Fr(sp) for each cluster Pr
Fr(sp)=

∑
xj∈Pr

vje–�〈sp;Cr−xj〉 (5)

• Transfer computations between cluster Pr and the others (Figure 1)
Gr(sp)=

∑
Pt far from Pr

Ft(sp)Tl;Cr−Ct (sp) (6)

• Computations of ui ∈Pr
ui=

∑
sp
!pGr(sp)e–�〈sp; xi−Cr〉 (7)

The algorithm and storage complexity are both in an order of O(N 3=2).

2.5. Multi-level algorithm

With the One-Level FMM, the number of transfers increases exponentially, when the size of
the cluster is reduced (for reducing the size of the close interactions matrix). The multi-level
algorithm is a hierarchical subdivision of the space giving a hierarchical computational method
of transfers.
An e�cient way to store the points of the surface of the object, with a hierarchical subdi-

vision, is the oct-tree (Figure 2).

Remark 4
The size of the smallest cubes (leaves of the oct-tree) is a∼ 1=�.

Copyright ? 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2003; 43:839–864
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Figure 2. Oct-tree decomposition.

close clusters (don't transfer)

close clusters (don't transfer)

Pr  cluster

far clusters (to transfer)

0 

Figure 3. Transfers at level L0.

For clarity, we shall explain �rst the multi-level FMM algorithm on the continuous form (2).
Let us consider an oct-tree with 3 levels, named L0, L1, L2. We explain the method for 3

clusters Pr0 , Pr1 and Pr2 , respectively, at the levels L0, L1, L2, such that

Pr2 ⊂Pr1 ⊂Pr0
Like the One-level FMM algorithm, there are 3 main steps for the computation. The �rst

is to compute the radiation functions for every cluster Pt at each level.

Ft(s)=
∑
xj∈Pt

vje–�〈s;Ct−xj〉 (8)

Then, from the lowest level L0, we compute the transfers

Gr0 (s)=
∑

Pt0 far from Pr0
Pr0 and Pt0 at the same level

Ft0 (s)Tl;Cr0−Ct0 (s)
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Cluster Pr

Far clusters: to transfer 

Far clusters: to transfer Close clusters: don't transfer

Close clusters: don't transfer

1

Figure 4. Transfers at level L1.

Cluster Pr2

Figure 5. Transfers at level L2.

Then, at the level L1 many transfers are already completed, and we need to perform much
less transfers (Figure 4).

Gr1 (s)=
∑

Pt1 far from Pr1
Pr0 and Pt0 are close

Ft1 (s)Tl;Cr1−Ct1 (s)

where for any Pt1 at the level L1, Pt0 denotes its father: the only cluster at the level L0 with
Pt1 ⊂Pt0 .
We do so up to the higher level, in our example L2 (Figure 5).

Gr2 (s)=
∑

Pt2 far from Pr2
Pr1 and Pt1 are close

Ft2 (s)Tl;Cr2−Ct2 (s)

Then, the last step is to propagate the information from the root (level L0) to the leaves
(level L2).

G̃r1 (s) =Gr1 (s) + e
–�〈s;Cr1−Cr0 〉Gr0 (s)

G̃r2 (s) =Gr2 (s) + e
–�〈s;Cr2−Cr1 〉G̃r1 (s)
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Finally, we obtain ufar =M farv, with the formula

ufari =
∫
S2
e–�〈s; xi−Cr2 〉G̃r2 (s) ds

for any xi ∈Pr2 .

2.6. Multi-level FMM algorithm: discretization

Our discretization of the continuous form (Equation (2)) with quadrature points {sp} on S2
(Equation (4)) is mainly based on the exact integration of the spherical harmonic functions
Yl;m(�; �).
We choose to integrate Yl;m with {sp}= {(�j; �i)}, for 06i¡I , 06j¡J with a uniform

sample �i=(2�=I)i and a Gauss–Legendre sample �j, which requires twice less points than
with a uniform sample �j.
Then, all Yl;m, |m|6l; 06l62L can be integrated exactly with 2L+1 points for {�i} and L

points for {�j} and the unit sphere is discretized with (2L+1)L∼L2 points {(sp; !p)}, where
wp denotes the associated weight.

Remark 5
Better choices can be made [13], but they may increase the di�culties of an e�cient inter-
polation step.

2.6.1. Harmonic representation. The objective is to represent our discretized formulation (4)
applied to the previous discretization as a summation of spherical harmonic functions.

Theorem 1 (Addition of Spherical Harmonics Functions)
∀l∈Z; ∀x; y∈R3

Pl(x̂ · ŷ)= 4�
2l+ 1

l∑
m=−l

Yl;m(x̂)Yl;m(ŷ)

where x̂= x=|x|.
By an application of the Gegenbauer theorem [14]

e–x·y=
∞∑
l=0
(2l+ 1)–ljl(|x||y|)Pl(x̂ · ŷ) (9)

we can write the transfer function and the exponential function as summation of spherical
harmonic functions

Tl;P(s) =
L∑
l=0
–lh(1)l (�|P|)

l∑
m=−l

Yl;m(P̂)Yl;m(ŝ) (10)

e–�〈x; s〉 =
∞∑
l=0
–ljl(�|x|)

l∑
m=−l

Yl;m(x̂)Yl;m(ŝ) with s∈ S2 (11)
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Remark 6
Some experimentations of Chew and Darve [8; 15] show an empirical formula for an
acceptable error �

L=�a
√
3 + C(�) log(�a

√
3 + �)

where a is the size of the cluster.
The same truncation can be applied to (11) with a very low error.

Remark 7

2.6.2. Interpolation. The multi-level FMM algorithm needs discretized spheres S2 at each
level.
First, the computation of Fti(sp) can be deduced from Fti+1(sp)

Fti(sp)=
∑
Pr⊂Pti
Pr∈Li+1

Fr(sp)e–�〈sp;Cti−Cr〉

by formula (8) and

e–�〈sp;Cti−Cr〉e–�〈sp;Cr−xi〉=e–�〈sp;Cti−xi〉

However, the number discretization points of is not the same at each level, and we know
that it is proportional to (�Ri)2 where Ri is the radius of the cluster at the level Li. At the
level Li−1, the number of points is 4 times larger than at the level Li (because R2i−1 = 4R

2
i ),

so we need to interpolate.
There are many ways for interpolating such functions.

• Lagrange interpolation for a simple error analysis [16].
• Semi-naive scheme [17], with a forward FFT on �, a dense matrix–vector product on �,
and a backward FFT (exact algorithm, complexity O(S1:5), where S denotes the number
of points on the unit sphere).

• Scheme due to Alpert–Jakob–Chien [17], as before but the dense-matrix is compressed
with a 1D-FMM. Moreover, Yarvin and Rokhlin give an improvement of the 1D-FMM
algorithm applicable to this interpolation [18–20] (approximate algorithm, complexity
O(S log S)).

• The last one [8] is a sparsi�cation of the one used in the MLFMA variant due to Chew,
Lu, Song (complexity O(S)).

• A few other algorithms are also available [21–24].
We use the semi-naive scheme, because this step is not so expensive, even for large numbers

of unknowns (∼ 1 000 000).

2.6.3. Anterpolation. In a same manner, the anterpolation allows to reduce the number of
points on the sphere at the deepest level from the top to the leaves.

G̃ri+1(s)=Gri+1(s) + e
–�〈s;Cri+1−Cri 〉G̃ri(s)
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At the level Li, there are 4S points on the sphere, and at the level Li+1, there are S points.
The anterpolation is the symmetric operations of the interpolation. Then, we can use the same
methods than the interpolation, with some additional transpositions.

2.7. Complexity of the algorithm

For the complexity study, we assume a uniform distribution of Gauss points on the
surface.
When we use a one-level FMM algorithm, with N points distributed in

√
N packets

of
√
N points, the radius of a packet is O(N 1=4), then the number of points {sp} on S2 is

O(N 1=2).
The �rst step of the algorithm provides a O(

√
N ×√

N ×N 1=2)=O(N 3=2) complexity.
The next step, the transfers, needs to transfer all packet couples; the complexity is an order

of O((
√
N )2×N 1=2)=O(N 3=2).

The associated storage to the FMM and to the close-interactions are also an order of
O(N 3=2). Indeed, for each packet, the number of close packets is bounded by a constant
de�ned by the proximity criterion, and then for each line of this matrix there are an order of√
N non-zero values: there are O(N ×√

N )=O(N 3=2) non-zero values.
The global complexity of the one-level FMM is an order of O(N 3=2) for the CPU and the

storage, but the precomputation of the transfer functions is a way to avoid a additional cost
for their recomputation at each iteration.
For the multi-levels algorithm, we need to consider the interpolation, anterpolation and

transfer operators. We assume an interpolation operator with a complexity in O(N logN ).
Moreover, if we precompute the transfer function (O(N 3=2) for the higher levels, and very
expensive to store), with O(logN ) levels, we obtain a global complexity in O(N log2 N ).

3. A PARALLEL IMPLEMENTATION

3.1. Objectives and paradigms

Our objectives for a parallel implementation of the fast multipole method are:

• High frequency Maxwell equation solver.
Low frequency scheme and acoustic equation are also planned.

• Distributed memory architecture.
• Adaptive and load balancing capabilities.
• Multiple iterative solvers and preconditioners.

Then, our choices are:

• An object oriented design for a better abstraction of the FMM algorithm.
The FMM algorithm is independent of the problem: a better re-usability for others
equations.
The language chosen is C++with a heavy usage of templates.

• MPI-1, for a message passing paradigm where we used lot of asynchronous communi-
cations (and overlapping) in order to hide the latency of the network communications.
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the root of the tree, father of A

leaves of the tree
Node

sons of A

a anode A

Figure 6.

In the future, we will use MPI-2 for improving the performance on SMP§ machines,
with process spawning on a shared memory machine.

3.2. Objects distribution

3.2.1. De�nitions. We will de�ne some terms about trees for clarity (Figure 6).
A tree is an oriented graph, where each node may have multiple descendants, and one or

zero ascendant.

• Root: The root is the only node without ascendant (may be also called top of the tree).
• Father: The father of a node A is its ascendant (the root does not have any father).
• Son: A son of a node A is one of its descendants.
• Leaf: A leaf is a node without sons.
• Cluster: A cluster is an aggregation of triangles.
• Cell: The cell is the box and the cluster of triangles associated to a node.

3.2.2. The oct-tree. The oct-tree is a fast and easy-to-use manner for ordering the triangles;
but we need to �nd e�ciently clusters for many operations like neighbourhood building,
transfers. We have chosen to mark each cluster (for each level) with a unique label, easy to
locate: its location.
A location can be de�ned with a succession of N -bits numbers, where N is the dimension

of the space (each son of the N -tree can be represented with a N -bit number, so each node
has 2N sons).
We de�ne the root of the tree with the location number 1. The location is a mapping of

the physical space parameters to a binary number.
However, an oct-tree (N =3) must be bounded by a box. In our case, the box is de�ned

by the FMM algorithm as the smallest cube including all the triangles and with a condition
on the size of the smallest cells (of the leaves).

§SMP stands for symmetric multi-processors.
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1.11.011.11.00

1.11.10 1.11.11

1.01.11

1.01.011.01.00

1.01.10

1.00 1.01

1.111.10

1

Figure 7. Leaves indexing of a quad-tree (N =2D).

When we need to �nd the location number of a node, we will use the recursive algorithm:

Algorithm 1 Localization of a point X in a tree
1. Let B0 be the bounded box of a lmax-levels oct-tree
2. Let X be a point of the physical space
3. Let loc0 be the root location number: 1
4. for l from 1 to lmax − 1 do
5. Compute the relative to Bl−1 sub-box Bl where X is located
6. We denote s the box-son Bl
7. Each bit of s is the position of the centre Bl relative to the centre of Bl−1 in one

direction (other methods are also allowed)
8. New partial location locl= locl−1:s
9. end for
10. The location of X is loclmax−1

where ‘.’ denotes the concatenation operator.

Remark 8
This algorithm is also applied for the insertion of the triangles into the oct-tree (Figure 7).

Thus, the number of levels is bounded by the size of the integer used for the representation
of the location. A 32 bits number can represent up to 10 3D-levels¶ of an oct-tree (21 levels
for a 64 bits number).

3.2.3. A distributed oct-tree. With a distributed memory computer, we need a distributed
oct-tree (a full replicated oct-tree is not e�ciently compatible with our future dynamic load
balancing).
A way to distribute the tree in order to obtain a fast access to the information with a

minimized synchronization, is to replicate (share) a skeleton (the tree without the leaves) and

¶Not a real limitation; we have chosen to wrap it into an object which can be increased transparently but it will
become more expensive.
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852 P. HAV�E

Figure 8. Quad-tree: 3-partitioning skeleton.

Figure 9. A 3 levels 2D Morton curve.

Figure 10. A 3 levels 2D Hilbert curve.

to distribute (not share) the leaves. So, each process knows the existence of data on a leaf,
but the value is located on only one memory. This solution must be propagated to all the
tree: each node has only one owner (Figure 8).
An algorithm to solve the distribution of data on the tree, is an election algorithm, where

the best candidates are the processes with the most number of sons for a given node at the
previous level. We do so from the leaves to the top of the tree.
This algorithm is given to minimize the communication to a repository node by the other

processes, in the case of proximity and hierarchical access. We will see an example in
Section 3.4.2.

3.2.4. Surface partitioning. In the case of integral formulations on a closed surface, we need
to decompose this surface mesh on several memories, a distributed tree. First, we use an a
priori partitioning. There are a few well-known methods, often applied to volume partitioning,
like the usage of space �lling curves (Figures 9 and 10).
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Figure 11. Partition with Morton and Hilbert curves: the same non-simply connected parts; Hilbert curve
is not more e�cient than Morton curve.

Such methods are mainly based on a linear representation of the space and the algorithm
can be summarized like this:

Algorithm 2 Partition of a surface with a space �lling curve
1. Let nT number of triangles, P number of processes
2. Build a space �lling curve with l levels
3. while Walk along the curve do
4. while the amount of triangles of the current partition is under nT =P do
5. accumulate triangles
6. end while
7. end while

Remark 9
The space �lling curve can be built on the �y recursively.

Remark 10
In our case, l is given by the FMM algorithm.

We can observe that the Hilbert curve is less e�cient when we use it on a surface than on a
volume: there are more cases where the partition is not simply connected, like with the Morton
curve. However, a good property of this kind of partitioning is to optimize the �lling of the
tree with a low number of processes, for each tree branch, which reduces close-interaction
communications (Figure 11).
Another way may be a partitioning of the surface with its own connectivity: to map the

surface into a graph. But we need to de�ne criteria for partitioning. What is a good partition
for our study ? i.e. one which reduces communications cost.
The communications may be decomposed into two parts:

1. Close interactions;
2. FMM communications: Broadcast, gather, transfer steps.
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To reduce the cost of close interactions, we need to aggregate close clusters at the highest
level (i.e. the leaves), like the previous methods.
To reduce the cost of the speci�c FMM communications, we have to reduce shared parts

of the tree between processes, if they deal with far interactions; the gather and broadcast
steps need few communications with our one owner convention for nodes distribution. So, a
weighted graph partition may be a solution but we need to de�ne what the weights are and
how to partition a weighted graph; it is not an easy problem.

3.3. Main algorithms and structures

The FMM algorithm can be decomposed into two parts:

• Close interactions and
• Far interactions stored into a tree.

3.3.1. Close interactions. The close interactions are computed exactly and stored into a
distributed matrix. Four kinds of storage (sorted by speed) can be used.

• Storage into memory (RAM).
• Storage on a external device (like hard drive); the e�ciency of this storage depends on
the size of the blocks. We have already obtained the same e�ciency as full storage in
memory with blocks of 30 KB (with SCSI hard drives).

• Half storage: Singular parts are precomputed, left parts are computed on the �y.
• No storage, but fully computed on the �y, at each iteration.
The close-interactions matrix is a sparse matrix, where only non-zero values are stored. A

storage like CSR‖ matrix is really not e�cient, because it makes no use of the cache memory,
and has a lot of indirections. An intermediate solution is a compressed sparse block matrix
where each coe�cient is a full block matrix on which we can use fast full matrix product
algorithms.∗∗ Then, we can use a sparse structure for storing only non-zero values, and use
e�ciently cache memory for very fast full matrix products. Moreover, this way is better for
block migration during load-balancing steps, because we do not need to rebuild the entire
matrix structure.
The entire product is done with a good overlapping of communications and computations

(see Section 3.4 for more details).

Non-zeros Local interaction Non-local Timing E�ciency
Processes blocks number inter. blocks product (s) (%)
1=CSR matrix 16× 106 — — 6.60 —
1 30× 106 1150× 103 0 4.08 100
2 15× 106 577× 103 2300 2.02 101
4 7:5× 106 287× 103 2300 1.00 102
8 3:8× 106 143× 103 1700 0.49 104
16 1:9× 106 71× 103 2000 0.31 82

‖Stands for compressed sparse row matrix also called Morse storage.
∗∗We use an optimized BLAS product.
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Remark 11
We have obtained these results with 8 dual processors PIII-800 MHz. Up to 8 processes, we
use one process on each SMP machine, and for 16 processors, we can observe a decreasing
e�ciency, maybe, due to an increasing tra�c or a worse network management when all
processors are working.

Remark 12
This example gives a signi�cantly smaller number of interactions for CSR matrix
(here we use a sequential CSR matrix code), but we do not forget the additional memory for
rows and columns indices which is on the order of the number of coe�cients. However,
this example is the worth case for the block storage where each block is very small
(∼30 values).
A worst consequence of the choice of the block partitioning is to share some degrees of

freedom between blocks (local or non-local). Then, an additional step is their synchroniza-
tion. However, this step is still fast, with the use of overlapping algorithms (there are local
and non-local synchronization). We will test a parallel full sparse matrix, for better memory
optimization (rather than speed).
Furthermore, the close-interactions storage methods are completely independent of the

far-interactions storage methods and allow (in theory) a di�erent partitioning of the close-
interactions matrices. This will be used to improve easily the load balancing.

3.3.2. Speci�c FMM algorithms. The oct-tree is the main support of the data: each leaf
supports a part of the discretization (a collection of triangles) and a value (partial value
associated to its collection). Moreover, it carries connectivities, like close and far interactions.
Far interactions de�ne the transfers between clusters.
At the transfer step, processes exchange values associated to clusters. The mathematical

formulation shows them as point-to-point communications.
Even, a sequential implementation uses such a way: doing transfers one by one by reading

data to transfer in memory. However, a parallel implementation uses another expensive way:
a network. The networks are very slow relative to the memory, and we cannot do that even
with bu�ered communications.
When we analyse globally the transfers step, we can see that one cell sends many transfers

to many cells, and at the process level, one cell sends transfers to others cells, but the same
data.
Then, we can factorize the communications, so that a cell sends transfers to the others

cells by grouping them by process target. However, a received transfer from a cell need to
be distributed to local target cells. We use a direct representation for local transfers and a
factorized reverse representation for non-local transfers. (the transfers are stored on the target
and not on the source).
We need also to store transfers from a received node to the others local nodes; a global

point of view is to store transfer on the source node when the target node is local (by
symmetry, local transfers are well de�ned). Each process stores all the skeleton of the tree,
even the clusters of the other processes named virtual trees where we store local transfers for
un-factorization of factorized received transfers (Figures 12 and 13).
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cpu1

Virtual cpu2

Figure 12. Transfers by cpu1: factorizing.

Virtual cpu1

cpu2

Figure 13. Transfers by cpu2: un-factorizing.

Then, when we compute transfers, we can list separately local transfers (no communication)
and nonlocal transfers (stored on virtual trees). This data ordering allows some optimizations
seen in Section 3.4.

3.4. Optimization by dynamic overlapping

3.4.1. Task overlapping. The well-known idea is to avoid to wait for the end of communi-
cations and using asynchronous communication: we start communications, we do a few local
computations and we listen to the response of the previous requests. The only problem is how
to implement this e�ciently.
There are two kinds of overlapping: a static overlapping where the operations are scheduled

at compilation time, and a dynamic overlapping where the task loading de�nes when we need
to overlap. A drawback of the �rst one is the need to foresee when a communication is done
and cannot be used while the CPU load is not constant.
A good idea may be to write a multi-threaded program. However, every implementation of

MPI are not thread-safe and using it in this context is not so easy.
In fact, we need this for two events.

• Receiving (or waiting for) something and treating the requests.
• Sending something with a possible pre-processing.
Furthermore, each communication needs some time for the negotiation of a message with

another process: this is the latency. For reducing this, we can bu�erize them and reduce the
latency of many small messages to the latency of one.
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Algorithm 3 A simple way to overlap communications and computations

Let InBu�er, OutBu�er be bu�ers for receiving and sending
while Something to do do
if there is a ready datum in InBu�er then
Treat the incoming message

else if OutBu�er is not full then
Prepare and send an information with OutBu�er

else
Do some local computations

end if
end while

In our implementation, the communication bu�ers are C++ Objects which negotiate the
transport (data conversion and serialization) and the bu�ering (multiple modes), with the
multiple target processes.
Of course, the order of the actions de�nes their priorities, and can be adapted for each case.

Remark 13
MPI does not provide any warranty about the order of the transmitted messages: we need to
have a global point of view of the amount of the communications.

3.4.2. Task lists de�nition. If we want to apply the previous algorithm to each critical func-
tion, we need to de�ne what is a local computation.
We named a local computation a computation without any communication.
We will explain the usage of tasks list by an example.
The chosen example is the reduction of the leaves values to the upper levels: we need to

reduce (and interpolate) the value of a node with the values of its sons. This example may
be associated to the parallel summation of terms, where each terms are large vectors.
We can de�ne the partial reductions which need to wait for non-local values (and their

descendants) as non-local computations. Then, for each computation of this kind, we cannot
completely reduce the value and push them in a speci�c non-local todo list. For each com-
putation of this list, the local computations do not wait. When a non-local value arrives, the
associated treatment is to propagate the value up, until a non-computable node is reached. A
non-computable node is a node where there is left at least one value for reducing: the answers
of all its sons (local or non-local) are not yet received (Figure 14).
If we can de�ne local and non-local computations in two di�erent lists (with local inde-

pendent of non-local with small granularities), overlapping communications and computations
becomes more easy, and e�cient.

3.4.3. Limitations. This method is e�cient while the time of non-local communications is
lower than time of local communications. So, a critical part for the FMM is the transfer
step, where the number of transfers increases with the number of level. Some problems may
appear when one uses many FMM levels and many processes, because the costs of local
computations are really reduced, but the volume of communications increases exponentially.
A partial solution is to increase the communication reactivity with more parallel bu�ers for
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Non-local computations

Figure 14. All non-local computations for a 3-partitioning of a quad-tree: reduction case.

sending and receiving data. The number of processes may be bounded by the complexity of
the transfer step: if we use too many processes, the e�ciency may decrease.
Another weakness may be due to some MPI implementations (and the operating system),

the management of the communications, with a high consumption of processor power, or bad
reactivity under high cpu loading.
However, the overlapping of communications and computations gives us better load-balan-

cing, with an automatic scheduling of communications during computations.
Moreover, we use this feature only inside functions and not between functions, this will be

improved later.

3.5. General design

Here, we explain, in few words, how the di�erent parts are organized
Independent pre-processing and post-processing algorithms:
The pre-processing is decomposed into 4 parts.

• Reading the mesh: triangles, points, triangles orientation;
• Partitioning the mesh according to the best available static load-balancing;
• Building a coherent orientation of the edges: a same arbitrary orientation of each edge
seen by all adjacent triangles;

• Building the synchronization structures for shared edges between blocks.
The synchronizing step shares edges from di�erent inner and outer blocks, so as to have

an algebrical equivalence to a sequential code. The inner shared edges are due to the strict
block partitioning.
Equation speci�c operators: Each implementation for a given equation needs some speci�c

methods summarized into one speci�c equation object.

• The FMM operators: interpolation, anterpolation, transfer functions;
• Loading and unloading operators, for loading and unloading values from the current
partial solution vector on the FMM-tree leaves, at each iteration of the FMM algorithm;

• The types on the leaves of the FMM tree: an object (often a collection of triangles) and
a value (the value associated to the object).

A generic FMM tree: The FMM algorithm is almost the same for every application and
equation: Gather, Transfer, Broadcast. For each, we need a speci�c transfer operator and,
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sometimes, speci�c interpolate and anterpolate operators. This is the goal of our FMM-tree: an
abstraction of FMM algorithm, with the management of the parallelism, and calls to speci�c
external operators (via templates). The factorized transfers feature (Section 3.3.2) is use by
default.
Many new equations may be solved with only a modi�cation of these speci�c operators

without changing the global FMM algorithm. However, the transfer step may be di�erent when
we use a di�erent transfer communication scheme (like a non-factorizable transfers step).
Generic distributed sparse block matrices and solvers: The iterative scheme involves solvers

and some linear algebra. They are not speci�c to the fast multipole method. We implemented
various kinds of block storage: in core, out of core, recomputed, then an abstraction of the
parallel sparse block matrix allows a generic usage with a good e�ciency and for a small
e�ort.
At the present time, we are using two iterative solvers: GMRES and De�ated GMRES.

They are independent of the parallel linear algebra; more solvers are planned.
The use of good preconditioners (SPAI [25; 26]) may increase the e�ciency of the imple-

mentation on cases with bad condition numbers.

4. NUMERICAL RESULTS

Our code is not yet fully optimized and tuned for the best parameters (bu�er size, scheduling
algorithm, etc.), but some results are already satisfactory.

4.1. Unit radius spheres: code validation

This example is a test case for the validation; a comparison is done with the exact solution
of Maxwell’s equation for a perfectly conductive unit radius sphere.
For this test, we have used �0 = 1:25751× 10−6, �0 = 8:84806× 10−12 giving c=

299792548:2 m=s.
The sphere at �=0:3 with 50 000 triangles: The mesh has 50 000 triangles and corresponds

to 75 000 edges. At a frequency f=109 Hz corresponds to a wave number �=21 and to a
wavelength �=0:3, there are approximately 10–12 points by wavelength. We have used 7
FMM Levels. All this gives 11 400 000 non-zero coe�cients (96 000 block interactions) and
420 000 transfers (Figure 15).
The same problem with 200K triangles and �=0:15: The mesh has 200 000 triangles (i.e.

300 000 edges). A frequency f=2× 109 Hz giving a wave number �=42 and a wavelength
�=0:15. Again this corresponds to 10–12 points by wavelength. We have used 8 FMM levels,
giving 80 000 000 non-zero coe�cients (106 000 block interactions) and 1 600 000 transfers.
Performance overview: These tests are done on a cluster of 8 Dual PIII-800MHz SMP with

1 GB of memory for each. The cost of close interactions matrix products are not included in
these results, because the in-core mode does not allow to use a low number of processors
and the out-of-core mode is dramatically bad when 2 processes use the same hard drive for
storing the matrices. Furthermore, we do not count the synchronization step, because it may
decrease the results without load balancing features (not well equilibrated loads, especially
when the number of processors is large and not a power of 2) (Figure 16).
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Figure 15. 1 GHz, 50 K triangles, unit radius sphere test case.
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Figure 16. The unit radius sphere test case at 2 GHz and 200 K Triangles.

Remark 14
The e�ciency may be de�ned as the complement of the relative loss of computational power
due to increasing the number of processors (Figures 17 and 18).

600 K unknowns case: The mesh has 400 000 triangles (i.e. 600 000 edges). A frequency
f=3× 109Hz giving a wave number �=63 and a wave length �=0:1. Again this corresponds
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Processors 1 Iteration Time Transfer Eff. w/out Transfer Eff. Global Efficiency
1 460s - - -
2 270s 63% 98% 85.3%
4 143s 54% 98% 80.6%
8 80s 41% 97% 71.6%

12 80s 21% 86% 47.4%
16 63s 20% 82% 45.6%

Figure 17. 300 K–2 GHz unknowns case (uses the previous 200 K Triangles on a unit radius sphere).

Processors 1 Iteration Time Transfer Eff . w/out Transfer Eff . Global Efficiency 
2 141s - - -
4 73s 83% 99% 96.4%
8 40s 63% 97% 89.1%

12 33s 40% 85% 71.9%
16 29s 25% 80% 59.0%

Figure 18. 300 K–1 GHz unknowns case.

to 10–12 points by wavelength.

Processors 1 Iteration Time Transfer E�. w=out Transfer E�. Global E�ciency
2 564s — — —
4 302s 85% 99% 93.5%
8 164s 71% 98% 96.2%
12 145s 45% 88% 65.0%
16 115s 41% 85% 61.2%

Comments. The computations are divided into 2 parts: fully scalable, and badly scalable.
Many parts of our code are really scalable, but the critical part is the transfer step. This
step is mainly communication oriented, and the overlapping of communications with local
computations is more complicated. Even, using factorized transfers allows to reduce commu-
nications with more local computations and increase the overlapping, but when the number
of processors is high, there are more transfers, and the e�ciency decreases. We are studying
for an optimization of the transfers step by an adaptive loop size (i.e. growing local com-
putations); some good results are already available (up to ∼ 20% better: do not stress the
network card). However, these algorithms are not always stable, because the functional is
really chaotic (depends on time).
We can see worse performances when the number of processors is above 8 (more than 1

CPU used on each SMP machine). This may be due to the SMP architecture with a slow
network (one Ethernet 100 MB=s card for 2 processors), and the cache memory invalidation
(2 separated memory management units).
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Figure 19. 6� Airplane: radar cross-section.

Figure 20. 6� Airplane: intensity of the electric �eld.

4.2. An airplane at 6�

We have used a non-homogeneous mesh with 30 000 edges giving 10–18 points by wavelength
and 7 FMM Levels (Figures 19 and 20).
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5. CONCLUSION

Our implementation is not yet fully featured for solving very large problems (preconditioners,
etc.) [27; 28]; indeed, the main limitation is the number of levels which provides very large
transfer function to store in memory. Some optimizations with a computation on the �y or a
storage on a external memory are possible, but an optimal reloading of partial transfer function
in main memory is not so easy due to the overlapping of computations and communications
(a communication may be in late, and so need to reload twice the same transfer function).
Another solution may be to compress transfer functions [27]. For a better performance evalu-
ation, we need to use more realistic case than the unit sphere and a good (static and dynamic)
load balancing will be necessary to avoid spending time waiting for overloaded processes.
Nevertheless, we had implemented a number of features for the parallelization of the Fast

Multipole Method and we have obtained very encouraging and e�cient performances.
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